Nonequilibrium Molecular Dynamics of Trp Zwitterion in Water: Picosecond Fluorescence Measurements versus Computer Simulations.

Dmitri Toptygin and Ludwig Brand

This is an experimental test of MD simulations on the picosecond timescale. Tryptophan zwitterion in TIP3P water at 278°K was simulated using CHARMM22 forcefield with the excited-state Trp atomic charges from [Toptygin et al., J. Phys. Chem. B 2010, 114, 11323]. Six stable excited-state rotamers of Trp sidechain were found with the population density peaks near $(\chi_1, \chi_2) = (67^\circ, 80^\circ)$, (-170°, 57°), (-65°,115°), (65°,-85°), (-165°,-112°), (-65°,-80°). Curved boundaries between the rotamers on the (χ_1, χ_2) map were drawn along the troughs of the population density. Population density distribution within the boundaries of one rotamer reaches equilibrium in less than 20ps; equilibration between different rotamers takes much longer. At t>20ps rotamer populations can be described by a system of six first-order homogeneous linear differential equations. The solution is a sum of six terms $V_{mn}exp(-t/\tau_n)$. Population decay of each rotamer is not monoexponential and τ_n is not a lifetime. The same set of τ_n applies to all rotamers, but a different set of V_{mn} corresponds to each rotamer. The rotamers have slightly different fluorescence emission spectra, therefore fluorescence intensity is a sum of six terms $\alpha_n(\nu)\exp(-t/\tau_n)$, where α_n vary with the photon energy $h\nu$. We have determined τ_n and $\alpha_n(\nu)$ in the global analysis of spectrally- and time-resolved fluorescence data (time resolution 65ps FWHM). Only four exponential terms could be resolved from the experimental data in H₂O at 5°C (τ_1 =4780ps, τ_2 =2500ps, τ_3 =867ps, τ_4 =411ps); according to MD simulations the fifth term ($\tau_5=241$ ps) has a very small amplitude, and the sixth ($\tau_6=22$ ps) is faster than the time resolution. For a precise agreement between the experimental and simulated values of τ_n it is necessary to lower all potential barriers between rotamers by 0.178kcal/mol. This shows that fluorescence spectroscopy can be used to fine-tune torsional parameters.

Biophysical Society Meeting 2012, 1097-Plat, Room 25ABC, Mon, Feb 27, 10:00AM